How to have an all-renewable electric grid
- Written by David Timmons, Associate Professor of Economics, University of Massachusetts Boston
The main solution to climate change[1] is well known – stop burning fossil fuels. How to do this is more complicated, but as a scholar who does energy modeling, I and others see the outlines of a post-fossil-fuel future: We make electricity with renewable sources and electrify almost everything[2].
That means running vehicles and trains on electricity, heating buildings with electric heat pumps[3], electrifying industrial applications[4] such as steel production and using renewable electricity to make hydrogen[5] (similar to natural gas) for other requirements. So the focus is on powering the electric grid with renewable sources.
There is debate, though, about whether fully renewable electricity systems are feasible[6] and how quickly[7] the transition can be made. Here I argue that feasibility is clear, so only the transition question is relevant.
Known technologies
Draxis/flickr, CC BY-ND[8][9]My research focuses on the economics of renewable energy[10]. To demonstrate feasibility and estimate cost of renewable electricity systems, researchers use computer models that calculate potential production from different technologies at each point in time, based on changing weather conditions. A model reveals which combination of electricity sources and energy storage systems has the lowest cost while always meeting demand.
Many studies[11] demonstrate that fully renewable electric grids are feasible in the United States[12], Europe[13], Australia[14] and elsewhere. My colleagues and I recently completed a small-scale study on the island-nation of Mauritius[15]. Islands are attractive[16] places for initial renewable transitions because of their small scale, relative simplicity and dependence on imported fuels.
There are a number of ways to make renewable electricity[17]: hydro, wind, solar photovoltaics, geothermal and burning various forms of biomass (plant matter), besides improving efficiency[18] to use less energy. These are mature technologies with known costs.
Other possibilities include wave, tidal[19] and concentrating solar power[20], where reflectors focus solar rays to produce power. While these may be used in the future, the need to address climate change is urgent, and in my estimation, the mature technologies suffice.
Opinions on nuclear energy[21] run strong, which is another conversation. But models show that the United States does not need nuclear energy to retire fossil fuels.
The grid of the future
Renewable energy systems are location-specific: The best system depends on a location’s resources (is it windy?), its temporal pattern (how often is it not windy?) and availability of complementary sources (is there hydropower for backup?). Despite this location sensitivity, studies in disparate places are finding similar results.
Having a diversity of renewable sources can reduce costs. In particular, solar and wind are complementary[22] if the sunny season is not the windy season; models find that a combination of both is typically less expensive than either alone.
For most technologies, larger scale reduces cost[23]. For example, in the United States, large-scale solar farms can be more than 1,000 times larger than residential rooftop systems and about half the cost. To minimize cost, we build large systems.
U.S. Department of Interior, CC BY-SA[24][25]Because solar and wind conditions vary across the landscape, system costs fall as a production area grows[26], so there needs to be a robust electric grid[27] to move electricity from places where there is supply to places of demand. We also need more electricity for applications like transportation that currently use fossil fuels. This means the grid must grow.
Studies show that running an electric grid with variable renewable energy will include not using, or dumping, some energy[28] at times, a strategy that reduces cost compared to always storing surplus energy.
Still, some form of electricity storage[29] is needed. Batteries work well for smoothing short-term fluctuations, but for storing energy for many hours or days, pumped hydroelectric storage[30] is less expensive. Pumped hydro uses any extra energy in the grid to pump water uphill, and when energy is needed, the water runs back down to generate power in a turbine. The United States has some existing examples and many feasible locations[31]. With grid expansion, storage may be located at a distance from users.
Hydroelectricity and biomass power are available on demand, so having these in a renewable electric grid shrinks the energy storage need and reduces cost. Both have environmental effects that must be managed.
References
- ^ climate change (www.ipcc.ch)
- ^ make electricity with renewable sources and electrify almost everything (www.vox.com)
- ^ heat pumps (www.energy.gov)
- ^ industrial applications (www.sciencedirect.com)
- ^ hydrogen (www.irena.org)
- ^ feasible (www.sciencedirect.com)
- ^ how quickly (theconversation.com)
- ^ Draxis/flickr (www.flickr.com)
- ^ CC BY-ND (creativecommons.org)
- ^ economics of renewable energy (scholar.google.com)
- ^ Many studies (www.sciencedirect.com)
- ^ United States (www.pnas.org)
- ^ Europe (www.sciencedirect.com)
- ^ Australia (www.sciencedirect.com)
- ^ Mauritius (doi.org)
- ^ Islands are attractive (theconversation.com)
- ^ ways to make renewable electricity (www.ase.tufts.edu)
- ^ improving efficiency (www.sciencedirect.com)
- ^ wave, tidal (learning.media.mit.edu)
- ^ concentrating solar power (www.seia.org)
- ^ nuclear energy (www.bostonglobe.com)
- ^ complementary (www.sciencedirect.com)
- ^ larger scale reduces cost (www.lazard.com)
- ^ U.S. Department of Interior (www.flickr.com)
- ^ CC BY-SA (creativecommons.org)
- ^ costs fall as a production area grows (www.sciencedirect.com)
- ^ robust electric grid (theconversation.com)
- ^ include not using, or dumping, some energy (theconversation.com)
- ^ electricity storage (www.sciencedirect.com)
- ^ pumped hydroelectric storage (www.sciencedirect.com)
- ^ many feasible locations (www.sciencedirect.com)
- ^ U.S. Energy Information Administration (www.eia.gov)
- ^ CC BY (creativecommons.org)
- ^ biomass emits carbon dioxide (theconversation.com)
- ^ are reversible (onlinelibrary.wiley.com)
- ^ has not been stellar (www.nytimes.com)
- ^ U.S. study (pubs.rsc.org)
- ^ reduce energy costs (www.axios.com)
- ^ Mauritius (www.sciencedirect.com)
- ^ Some studies (www.sciencedirect.com)
- ^ dividends returned to the public (www.politico.com)
- ^ create jobs (www.americanprogress.org)
- ^ Sign up for The Conversation’s daily newsletter (theconversation.com)
Authors: David Timmons, Associate Professor of Economics, University of Massachusetts Boston
Read more http://theconversation.com/how-to-have-an-all-renewable-electric-grid-120713