• Written by Joshua R. Smith, Professor of Electrical and Computer Engineering and of Computer Science and Engineering, University of Washington
Device transmits radio waves with almost no power – without violating the laws of physics

A new ultra-low-power method of communication at first glance seems to violate the laws of physics. It is possible to wirelessly transmit information simply by opening and closing a switch that connects a resistor to an antenna. No need to send power to the antenna.

Our system, combined with techniques for harvesting energy from the environment[1], could lead to all manner of devices that transmit data, including tiny sensors and implanted medical devices, without needing batteries or other power sources. These include sensors for smart agriculture[2], electronics implanted in the body[3] that never need battery changes, better contactless credit cards[4] and maybe even new ways for satellites[5] to communicate.

Apart from the energy needed to flip the switch, no other energy is needed to transmit the information. In our case, the switch is a transistor, an electrically controlled switch with no moving parts that consumes a minuscule amount of power.

In the simplest form of ordinary radio, a switch connects and disconnects a strong electrical signal source – perhaps an oscillator that produces a sine wave fluctuating 2 billion times per second – to the transmit antenna[6]. When the signal source is connected, the antenna produces a radio wave, denoting a 1. When the switch is disconnected, there is no radio wave, indicating a 0.

What we showed is that a powered signal source is not needed. Instead, random thermal noise, present in all electrically conductive materials because of the heat-driven motion of electrons, can take the place of the signal driving the antenna.

No free lunch

We are electrical engineers[7] who research wireless systems[8]. During the peer review of our paper[9] about this research, published recently in Proceedings of the National Academy of Sciences, reviewers asked us to explain why the method did not violate the second law of thermodynamics[10], the main law of physics that explains why perpetual motion machines[11] are not possible.

Perpetual motion machines are theoretical machines that can work indefinitely without requiring energy from any external source. The reviewers worried that if it were possible to send and receive information with no powered components, and with both the transmitter and receiver at the same temperature, that would mean that you could create a perpetual motion machine. Because this is impossible, it would imply that there was something wrong with our work or our understanding of it.

A graphic in the top half showing a horizontal cylinder on the left with a pipe extending to the right with a 90-degree bend upward connecting to an upside-down triangle with pairs of curved lines on either side, and in the bottom half the same but disconnected
Electrons that naturally move around inside a room-temperature resistor affect electrons in a connected antenna, which causes the antenna to generate radio waves. Connecting and disconnecting the antenna produces the ones and zeros of a binary signal. Zerina Kapetanovic, CC BY-ND[12]

One way the second law can be stated is that heat will flow spontaneously only from hotter objects to colder objects. The wireless signals from our transmitter transport heat. If there were a spontaneous flow of signal from the transmitter to the receiver in the absence of a temperature difference between the two, you could harvest that flow to get free energy, in violation of the second law.

The resolution of this seeming paradox is that the receiver in our system is powered and acts like a refrigerator. The signal-carrying electrons on the receive side are effectively kept cold by the powered amplifier, similar to how a refrigerator keeps its interior cold by continuously pumping heat out. The transmitter consumes almost no power, but the receiver consumes substantial power, up to 2 watts. This is similar to receivers in other ultra-low-power communications systems. Nearly all of the power consumption happens at a base station that does not have constraints on energy use.

A simpler approach

Many researchers worldwide have been exploring related passive communication methods, known as backscatter[13]. A backscatter data transmitter looks very similar to our data transmitter device. The difference is that in a backscatter communication system, in addition to the data transmitter and the data receiver, there is a third component that generates a radio wave. The switching performed by the data transmitter has the effect of reflecting that radio wave, which is then picked up at the receiver.

An example of backscatter unpowered wireless communications.

A backscatter device[14] has the same energy efficiency as our system, but the backscatter setup is much more complex, since a signal-generating component[15] is needed. However, our system has lower data rate and range than either backscatter radios or conventional radios.

What’s next

One area for future work is to improve our system’s data rate and range, and to test it in applications such as implanted devices. For implanted devices, an advantage of our new method is that there is no need to expose the patient to a strong external radio signal, which can cause tissue heating. Even more exciting, we believe that related ideas could enable other new forms of communication in which other natural signal sources, such as thermal noise from biological tissue or other electronic components, can be modulated.

Finally, this work may lead to new connections between the study of heat (thermodynamics) and the study of communication (information theory). These fields are often viewed as analogous, but this work suggests some more literal connections between them.


  1. ^ harvesting energy from the environment (
  2. ^ smart agriculture (
  3. ^ electronics implanted in the body (
  4. ^ contactless credit cards (
  5. ^ satellites (
  6. ^ transmit antenna (
  7. ^ electrical engineers (
  8. ^ research wireless systems (
  9. ^ our paper (
  10. ^ second law of thermodynamics (
  11. ^ perpetual motion machines (
  12. ^ CC BY-ND (
  13. ^ backscatter (
  14. ^ backscatter device (
  15. ^ signal-generating component (

Authors: Joshua R. Smith, Professor of Electrical and Computer Engineering and of Computer Science and Engineering, University of Washington

Read more

Metropolitan republishes selected articles from The Conversation USA with permission

Visit The Conversation to see more

Metropolitan Business News

Will eCommerce Businesses Be Affected by the Financial Crisis?

As unfortunate as it is, the current financial crisis has had a negative impact on eCommerce businesses. In fact, some have already reported a drop in sales as customers cut back on spending. eComme... - avatar

An Exploration Of The Challenges Faced By Accounting Professionals In Sydney

The accounting profession in Sydney plays a vital role in the financial success of businesses of all sizes. Small businesses in particular rely on the expertise of accountants to navigate the comple... - avatar

Essential Tips and Process for Getting Home Loans

Home loans are an essential financial tool that can help you realize your dream of owning a home. They provide the funds you need to purchase a home while allowing you to pay them back over time wit... - avatar

Seven Debt Solutions Your Company Needs Now

In today’s economy, it has become more and more difficult to manage the day-to-day operations of your company without taking on extra debt. This could come in the form of vendor or supplier loans... - avatar

Work from Home in Rural Areas: Challenges and Solutions

Living off the land is quite difficult in the 21st century, which is why more and more young people are migrating to big cities. However, with the increase in the trend of remote work, some of these... - avatar

An Expert Guide to Launching a Business in New South Wales

Over 700,000 small businesses are thriving in New South Wales, making it a fantastic place to launch a new venture. The state's economy is expanding quickly, and robust pipelines for infrastructure ... - avatar

Content & Technology Connecting Global Audiences

More Information - Less Opinion